Велика бібліотека української літератури
» » » Гармонические колебания

Рефераты по математике Колебаниями называются движения или процессы, которые характеризуются определённой повторяемостью во времени. Колебания бывают: Вынужденные

Гармонические колебания

Колебаниями называются движения или процессы, которые характеризуются определённой повторяемостью во времени. Колебания бывают:

Вынужденные

Гармонические

Затухающие

Периодические

Внешняя сила, обеспечивающая незатухающие колебания системы, называется вынужденной, а колебания системы – вынужденными.

Гармоническим называют колебание, при котором изменение колеблющейся величины со временем происходит по закону синуса (или косинуса, если точка М (материальная точка) проецируется на горизонтальный диаметр).

Колебательное движение реальной механической системы всегда сопровождается трением, на преодоление которого расходуется часть энергии колебательной системы. Поэтому энергия колебания в процессе колебания уменьшается, переходя в теплоту. Т.к. энергия колебания пропорциональна квадрату амплитуды, то постепенно уменьшается и амплитуда колебаний (см. Рисунок: х - смещение, t – время). Когда вся энергия колебания перейдёт в теплоту, колебание прекратится. Такого рода колебания называются затухающими.

Периодическим называется колебание, при котором, система отклоняется от своего состояния равновесия, и каждый раз возвращается к нему через одинаковые промежутки времени.

Колебательные процессы широко распространены в природе и технике: вибрация натянутой струны, движение поршня дизеля и ножей косилки, суточные и годичные изменения температуры воздуха, морские приливы и отливы, волнение водной поверхности, биение сердца, дыхание, тепловое движение ионов кристаллической решётки твёрдого тела, переменный ток и его электромагнитное поле, движение электронов в атоме, и, конечно, движение часового маятника. Рассмотрим колебания математического маятника:

Математическим маятником называется материальная точка, колеблющаяся на невесомой и недеформируемой нити.

Момент инерции математического маятника равен:

J = ml2 ,

Где m – масса материальной точки, l – длина нити.

Подставляя это выражение в выражение периода колебание маятника (T = 2 / = 2 J/(mgl)), получим окончательную формулу периода колебаний математического маятника:

T = 2 l/g.

Отсюда следует, что при малых отклонениях период колебания математического маятника пропорционален квадратному корню из длины маятника, обратно пропорционален квадратному корню из ускорения свободного падения и не зависит от амплитуды колебаний и массы маятника.

Колебательные явления могут возникать помимо нашего желания и играть вредную роль: часто наблюдаются нежелательные и опасные колебания сооружений, вибрации механизмов и т.д.

Список литературы

Р.И. ГРАБОВСКИЙ (Курс Физики)

О.Ю. ШМИДТ, Ф.Н. ПЕТРОВ (Большая Советская Энциклопедия)

Оценок: 1000 (средняя 5 из 5)
© 2014 - 2017 BigLib.info — это сокращение от Big Library (большая библиотека).
Целью создания этого сайта было сделать литературу доступной для всех, кто желает ее читать.
Использование любых материалов сайта без согласования с администрацией запрещено.
Обратная связь